CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SPECIFICATIONS</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>PERFORMANCE CURVES</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>GENERAL DESCRIPTION</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>RANGE OF APPLICATIONS</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>MEASURING PROCEDURES</td>
<td>17</td>
</tr>
<tr>
<td>5-1</td>
<td>MEASURING INSTRUMENTS</td>
<td>17</td>
</tr>
<tr>
<td>5-2</td>
<td>AC OUTPUT MEASURING</td>
<td>19</td>
</tr>
<tr>
<td>5-3</td>
<td>DC OUTPUT MEASURING</td>
<td>19</td>
</tr>
<tr>
<td>5-4</td>
<td>MEASURING INSULATION RESISTANCE</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>CHECKING FUNCTIONAL MEMBERS</td>
<td>21</td>
</tr>
<tr>
<td>6-1</td>
<td>RECEPTACLES</td>
<td>21</td>
</tr>
<tr>
<td>6-2</td>
<td>CIRCUIT BREAKER</td>
<td>22</td>
</tr>
<tr>
<td>6-3</td>
<td>STATOR</td>
<td>23</td>
</tr>
<tr>
<td>6-4</td>
<td>ROTOR ASSEMBLY</td>
<td>24</td>
</tr>
<tr>
<td>6-5</td>
<td>BRUSH</td>
<td>25</td>
</tr>
<tr>
<td>6-6</td>
<td>A.V.R. (AUTOMATIC VOLTAGE REGULATOR)</td>
<td>25</td>
</tr>
<tr>
<td>6-7</td>
<td>DIODE STACK</td>
<td>27</td>
</tr>
<tr>
<td>6-8</td>
<td>OIL SENSOR</td>
<td>28</td>
</tr>
<tr>
<td>7.</td>
<td>DISASSEMBLY AND ASSEMBLY</td>
<td>29</td>
</tr>
<tr>
<td>7-1</td>
<td>PREPARATION and PRECAUTIONS</td>
<td>29</td>
</tr>
<tr>
<td>7-2</td>
<td>DISASSEMBLY PROCEDURES</td>
<td>29</td>
</tr>
<tr>
<td>7-3</td>
<td>COMPONENT PARTS</td>
<td>32</td>
</tr>
<tr>
<td>7-4</td>
<td>ASSEMBLY PROCEDURES</td>
<td>37</td>
</tr>
<tr>
<td>7-5</td>
<td>CHECKING, DISASSEMBLY and REASSEMBLY of the CONTROL PANEL</td>
<td>47</td>
</tr>
<tr>
<td>8.</td>
<td>TROUBLESHOOTING</td>
<td>48</td>
</tr>
<tr>
<td>8-1</td>
<td>NO AC OUTPUT</td>
<td>48</td>
</tr>
<tr>
<td>8-2</td>
<td>AC VOLTAGE IS TOO HIGH OR TOO LOW</td>
<td>49</td>
</tr>
<tr>
<td>8-3</td>
<td>AC VOLTAGE IS NORMAL AT NO-LOAD, BUT THE LOAD CANNOT BE APPLIED</td>
<td>50</td>
</tr>
<tr>
<td>9.</td>
<td>WIRING DIAGRAM</td>
<td>52</td>
</tr>
</tbody>
</table>

NOTE

This Service Manual excludes information for engine.
As for the total servicing information as a generator set, please refer in conjunction with the Robin EX13/17/21/27 and EX30 OHC Engine Service Manual.
1. SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RGX3000</th>
<th>RGX3800</th>
<th>RGX5100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Brush, self-exciting, 2-poles, single phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage regulating system</td>
<td>AVR type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated current A</td>
<td>18.2, 9.1, 18.2/9.1, 8.7, 8.3</td>
<td>21.8, 10.9, 21.8/10.9, 10.4, 10</td>
<td>32.7, 16.4, 32.7/16.4, 15.7, 15</td>
</tr>
<tr>
<td>Rated output</td>
<td>2000</td>
<td>2400</td>
<td>3600</td>
</tr>
<tr>
<td>VA (W) 60 Hz</td>
<td>2400</td>
<td>2400</td>
<td>4200</td>
</tr>
<tr>
<td>Rated power factor</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety device type</td>
<td>Fuse-less circuit breaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated voltage V</td>
<td>50 Hz</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Rated current A</td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety device type</td>
<td>Fuse-less circuit breaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>EX17D</td>
<td>EX21D</td>
<td>EX30D</td>
</tr>
<tr>
<td>Type</td>
<td>ROBIN, Air-cooled, 4-stroke, OHC, Gasoline Engine</td>
<td>ROBIN, Air-cooled, 4-stroke, OHC, Gasoline Engine</td>
<td>ROBIN, Air-cooled, 4-stroke, OHC, Gasoline Engine</td>
</tr>
<tr>
<td>Displacement</td>
<td>mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Dimension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive Unleaded Gasoline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel tank capacity L</td>
<td>12.8</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>Engine oil capacity L</td>
<td>0.6</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Spark plug</td>
<td>BR-6HS (NGK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting system</td>
<td>Recoil starter</td>
<td>Electric starter / Recoil</td>
<td></td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Counter - clockwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>mm</td>
<td>600</td>
<td>620</td>
</tr>
<tr>
<td>Width</td>
<td>mm</td>
<td>420</td>
<td>450</td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Dry weight</td>
<td>kg</td>
<td>47</td>
<td>52</td>
</tr>
</tbody>
</table>

Specifications are subject to change without notice.

*1: () shows the filled amount up to the "LEVEL" position.
*2: () shows dimensions with Battery frame.
*3: () shows dry weight with Electric starter.
2. PERFORMANCE CURVES

• RGX3000

50Hz-220V

50Hz-230V
50Hz-240V

60Hz-120V
•RGX3800

50Hz-220V

50Hz-230V
50Hz-240V

60Hz-120/240V
RGX5100

50Hz-220V

N / A

50Hz-230V
50Hz-240V

N / A

60Hz-120/240V

[Diagram of Voltage (V), Frequency (Hz), and Output (VA) vs. Current (A)]
3. GENERAL DESCRIPTION

- Control panel
- Fuel tank
- Fuel gauge
- Engine switch
- Re却 coil starter handle
- Re却 coil starter
- Oil drain plug
- Oil gauge (oil filler)
- Fuel strainer (Fuel cock)
- Tank cap
- Fuel tank
- Spark plug cap
- Choke lever
- Air cleaner
- Muffler
CONTROL PANEL

• RGX3000

(50Hz-220V, 240V)

Engine switch
AC receptacle
AC circuit breaker
Voltmeter
DC circuit breaker
Earth (ground)
terminal
DC receptacle

(50Hz-230V)

Engine switch
AC receptacle
AC circuit breaker
Voltmeter
DC circuit breaker
Earth (ground)
terminal
DC receptacle

(60Hz-120V)

AC receptacle 20A
AC circuit breaker
Pilot lamp
DC circuit breaker
Engine switch
Earth (ground)
terminal
Hour meter
DC receptacle
• RGX3800
(50Hz-220V, 240V)

(50Hz-230V)

(60Hz-120/240V)
• RGX5100

(50Hz-220V, 240V)

(50Hz-230V)

(60Hz-120/240V)
SERIAL NUMBER

Serial number is stamped on the label stuck on the control box.

NOTE: Always specify serial number when inquiring about the generator or ordering spare parts in order to get correct parts and accurate service.
CONSTRUCTION

• RGX3000 / RGX3800

• RGX5100
4. RANGE OF APPLICATIONS

Generally, the power rating of an electrical appliance indicates the amount of work that can be done by it. The electric power required for operating an electrical appliance is not always equal to the output wattage of the appliance. The electrical appliances generally have a label showing their rated voltage, frequency, and power consumption (input wattage). The power consumption of an electrical appliance is the power necessary for using it. When using a generator for operating an electrical appliance, the power factor and starting wattage must be taken into consideration.

In order to determine the right size generator, it is necessary to add the total wattage of all appliances to be connected to the unit.

Refer to the followings to calculate the power consumption of each appliance or equipment by its type.

(1) Incandescent lamp, heater, etc. with a power factor of 1.0

Total power consumption must be equal to or less than the rated output of the generator.

Example: A rated 3000W generator can turn thirty 100W incandescent lamps on.

(2) Fluorescent lamps, motor driven tools, light electrical appliances, etc. with a smaller power factor

Select a generator with a rated output equivalent to 1.2 to 2 times of the power consumption of the load. Generally the starting wattage of motor driven tools and light electrical appliances are 1.2 to 3 times larger than their running wattage.

Example: A rated 250 W electric drill requires a 400 W generator to start it.

NOTE 1: If a power factor correction capacitor is not applied to the fluorescent lamp, the more power shall be required to drive the lamps.

NOTE 2: Nominal wattage of the fluorescent lamp generally indicates the output wattage of the lamp. Therefore, if the fluorescent lamp has no special indication as to the power consumption, efficiency should be taken into account as explained in Item (5) on the following page.

(3) Mercury lamps with a smaller power factor

 Loads for mercury lamps require 2 to 3 times the indicated wattage during start-up.

Example: A 400 W mercury lamp requires 800 W to 1200 W power source to be turned on. A rated 3000 W generator can power two or three 400 W mercury lamps.

(4) Initially loaded motor driven appliances such as water pumps, compressors, etc.

These appliances require large starting wattage which is 3 to 5 times of running wattage.

Example: A rated 900 W compressor requires a 4500 W generator to drive it.

NOTE 1: Motor-driven appliances require the aforementioned generator output only at the starting. Once their motors are started, the appliances consume about 1.2 to 2 times their rated power consumption so that the excess power generated by the generator can be used for other electrical appliances.

NOTE 2: Motor-driven appliances mentioned in items (3) and (4) vary in their required motor starting power depending on the kind of motor and start-up load. If it is difficult to determine the optimum generator capacity, select a generator with a larger capacity.
Efficiencies of some electrical appliances are as follows:

- Single-phase motor 0.6 to 0.75
- Fluorescent lamp 0.7 to 0.8

Efficiencies of some electrical appliances are as follows:

\[
\frac{\text{(Output of electrical appliance)}}{\text{(Efficiency)}} = \text{(Power consumption)}
\]

Example 1: A 40W fluorescent lamp means that its luminous output is 40W. Its efficiency is 0.7 and accordingly, power consumption will be 40÷0.7 = 57W. As explained in Item (2), multiply this power consumption value of 57 W by 1.2 to 2 and you will get the figure of the necessary capacity of a generator. In other words, a generator with a rated output of 1000W capacity can light nine to fourteen 40 W fluorescent lamps.

Example 2: Generally speaking, a 400 W motor means that its work load is 400 W. Efficiency of this motor is 0.7 and power consumption will be 400÷0.7 = 570 W. When this motor is used for a motor-driven tool, the capacity of the generator should be multiple of 570 W by 1.2 to 3 as explained in the Item (3). 570 (W) × 1.2 to 3 = 684 (W) to 1710 (W)

Appliances without any indication as to power consumption

Some appliances have no indication as to power consumption; but instead the work load (output) is indicated. In such a case, power consumption is to be worked out according to the numerical formula mentioned below.

\[
\frac{\text{(Output of electrical appliance)}}{\text{(Efficiency)}} = \text{(Power consumption)}
\]

(5) Appliances without any indication as to power consumption

Some appliances have no indication as to power consumption; but instead the work load (output) is indicated. In such a case, power consumption is to be worked out according to the numerical formula mentioned below.

Table 4-1

<table>
<thead>
<tr>
<th>Applications</th>
<th>Applicable Wattage (approx. W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50Hz</td>
</tr>
<tr>
<td></td>
<td>RGX3000</td>
</tr>
<tr>
<td>Incandescent lamp, Heater</td>
<td>2000</td>
</tr>
<tr>
<td>Fluorescent lamp, Electric tool</td>
<td>1100</td>
</tr>
<tr>
<td>Mercury lamp</td>
<td>800</td>
</tr>
<tr>
<td>Pump, Compressor</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 4-1
NOTES : Wiring between generator and electrical appliances

1. Allowable current of cable
 Use a cable with an allowable current that is higher than the rated input current of the load (electrical appliance). If the input current is higher than the allowable current of the cable used, the cable will become excessively heated and deteriorate the insulation, possibly burning it out. Table 4-2 shows cables and their allowable currents for your reference.

2. Cable length
 If a long cable is used, a voltage drop occurs due to the increased resistance in the conductors decreasing the input voltage to the load (electrical product). As a result, the load can be damaged. Table 4-2 shows voltage drops per 100 meters of cable.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>No. A</td>
<td>No./mm</td>
<td>Ω/100m</td>
<td>1A 3A 5A 8A 10A 12A 15A</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>18 7</td>
<td>30/0.18</td>
<td>2.477</td>
<td>2.5V 7.5V 12.5V — — — —</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>16 12</td>
<td>50/0.16</td>
<td>1.486</td>
<td>1.5V 4.5V 7.5V 12V 15V 18V —</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>14 17</td>
<td>37/0.26</td>
<td>0.952</td>
<td>1V 3V 5V 8V 10V 12V 15V</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>12 to 10 23</td>
<td>45/0.32</td>
<td>0.517</td>
<td>— 1.5V 2.5V 4V 5V 6.5V 7.5V</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>10 to 8 35</td>
<td>70/0.32</td>
<td>0.332</td>
<td>— 1V 2V 2.5V 3.5V 4V 5V</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-2

Voltage drop indicates as \[V = \frac{1}{100} \times R \times I \times L \]

- R means resistance (Ω/100 m) on the above table.
- I means electric current through the wire (A).
- L means the length of the wire (m).

The length of wire indicates round length, it means twice the length from generator to electrical tools.
5. MEASURING PROCEDURES

5-1 MEASURING INSTRUMENTS

(1) VOLTMETER
AC voltmeter is necessary. The approximate AC voltage ranges of the voltmeters to be used for various types of generators are as follows:
- 0 to 150 V: Type with an output voltage of 110 or 120 V
- 0 to 300 V: Type with an output voltage of 220, 230 or 240 V
- 0 to 150 V, 0 to 330 V: Dual voltage type

(2) AMMETER
AC ammeter is necessary. An AC ammeter with a range that can be changed according to the current rating of a given generator is most desirable.
(About 10 A, 20 A, 100 A)

(3) FREQUENCY METER
Frequency range: About 45 to 65 Hz

NOTE: Be careful of the frequency meter's input voltage range.
(4) CIRCUIT TESTER
Used for measuring resistance, etc.

(5) MEGGER TESTER
Used for measuring generator insulation resistance.
Select one with testing voltage range of 500V.

(6) TACHOMETER
Use the contactless type tacho meter.
5-2 AC OUTPUT MEASURING

Use a circuit above for measuring AC output. A hot plate or lamp with a power factor of 1.0 may be used as a load. Adjust the load and rpm. and check that the voltage range is as specified in the following table at the rated amperage and rated rpm.

<table>
<thead>
<tr>
<th>Model</th>
<th>Hz</th>
<th>Rated voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>110V</td>
</tr>
<tr>
<td>RGX3000</td>
<td>50</td>
<td>107-115</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>107-115</td>
</tr>
<tr>
<td>RGX3800</td>
<td>50</td>
<td>107-115</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>107-115</td>
</tr>
<tr>
<td>RGX5100</td>
<td>50</td>
<td>107-115</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>107-115</td>
</tr>
</tbody>
</table>

5-3 DC OUTPUT MEASURING

Measurement of DC output is executed with the switch turned ON while the current is regulated at 8.3A by adjusting the load to the generator. If the voltage is within the range from 10V, the voltage output is normal.

NOTE: If a battery is connected as a load to the generator, the DC output voltage will increase by approximately 1 to 2 V. Therefore, carefully observe the electrolyte level and do not overcharge the battery.

5-4 MEASURING INSULATION RESISTANCE

Use a megger tester to check the insulation resistance. Remove the control panel, and disconnect the connector of GREEN lead for ground. Connect a megger tester to one of receptacle output terminals and the ground terminal, then measure the insulation resistance.
An insulation resistance of 1 megohm or more is normal. (The original insulation resistance at the time of shipment from the factory is 10 megohm or more.) If it is less than 1 megohm, disassemble the generator and measure the insulation resistance of the stator, rotor and control panel individually.

(1) STATOR
 Measure the insulation resistance between each lead wire and the core.

(2) ROTOR
 Measure the insulation resistance between the slip ring and the core.

(3) CONTROL PANEL
 Measure the insulation resistance between the live parts and the grounded parts.

Any part where the insulation resistance is less than 1MΩ has faulty insulation, and may cause electric leakage and electric shock. Replace the faulty part.
6. CHECKING FUNCTIONAL MEMBERS

6-1 RECEPTACLES
Using a circuit tester, check continuity between the two terminals at the rear of the receptacles while the receptacle is mounted on the control panel.

When continuity is found between the output terminals of the receptacle with a wire connected across these terminals, the receptacle is normal. When the wire is removed and no continuity is found between these terminals, the receptacles are also normal.
6-2 CIRCUIT BREAKER
Check continuity between each of two terminals at the rear of the circuit breaker while it is mounted on the control panel. Normally, there is continuity between each of the two when the circuit breaker is on while there is no continuity when the circuit breaker is off.

•AC CIRCUIT BREAKER

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Rated output</th>
<th>Rated voltage</th>
<th>Rated fault current</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGX3000</td>
<td>50Hz</td>
<td>2000VA</td>
<td>220V</td>
<td>10A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60Hz</td>
<td>2400VA</td>
<td>120V</td>
<td>23A</td>
<td>2</td>
</tr>
<tr>
<td>RGX3800</td>
<td>50Hz</td>
<td>2400VA</td>
<td>220V</td>
<td>12A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60Hz</td>
<td>2900VA</td>
<td>110V / 220V</td>
<td>15A</td>
<td>3</td>
</tr>
<tr>
<td>RGX5100</td>
<td>50Hz</td>
<td>3600VA</td>
<td>220V</td>
<td>20A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60Hz</td>
<td>4200VA</td>
<td>110V / 220V</td>
<td>20A</td>
<td>3</td>
</tr>
</tbody>
</table>

•DC CIRCUIT BREAKER

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated current</th>
<th>Rated voltage</th>
<th>Rated fault current</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGX3000</td>
<td>8.3A</td>
<td>12V</td>
<td>10A</td>
<td>1</td>
</tr>
<tr>
<td>RGX3800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGX5100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6-3 STATOR

Disengage connectors on the wires from stator and check the resistance between wires with a circuit tester referring to the following table.

NOTE: If the circuit tester is not sufficiently accurate, it may not show the values given and may give erroneous readings. Erroneous readings will also occur when there is a wide variation of resistance among coil windings or when measurement is performed at ambient temperatures different from 20 °C (68 °F).

1) RGX3000 / RGX3800

<table>
<thead>
<tr>
<th></th>
<th>50Hz-220V</th>
<th>50Hz-230V</th>
<th>50Hz-240V</th>
<th>60Hz-120V</th>
<th>60Hz-110/220V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC WINDING 1</td>
<td>RED - GRAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGX3000</td>
<td>0.980</td>
<td>1.042</td>
<td>1.234</td>
<td>0.851</td>
<td>0.749</td>
</tr>
<tr>
<td>RGX3800</td>
<td>0.772</td>
<td>0.753</td>
<td>0.902</td>
<td>0.605</td>
<td>0.615</td>
</tr>
<tr>
<td>AC WINDING 2</td>
<td>ORANGE - BLUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGX3000</td>
<td>0.980</td>
<td>1.042</td>
<td>1.234</td>
<td>0.851</td>
<td>0.749</td>
</tr>
<tr>
<td>RGX3800</td>
<td>0.772</td>
<td>0.753</td>
<td>0.902</td>
<td>0.605</td>
<td>0.615</td>
</tr>
<tr>
<td>SUB COIL</td>
<td>YELLOW - YELLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGX3000</td>
<td>3.682</td>
<td>3.530</td>
<td>3.570</td>
<td>2.390</td>
<td>2.370</td>
</tr>
<tr>
<td>RGX3800</td>
<td>3.100</td>
<td>3.030</td>
<td>3.121</td>
<td>2.080</td>
<td>2.060</td>
</tr>
<tr>
<td>DC WINDING</td>
<td>BROWN - BROWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGX3000</td>
<td>0.193</td>
<td>0.238</td>
<td>0.215</td>
<td>0.189</td>
<td>0.191</td>
</tr>
<tr>
<td>RGX3800</td>
<td>0.186</td>
<td>0.172</td>
<td>0.183</td>
<td>0.187</td>
<td>0.163</td>
</tr>
<tr>
<td>AC WINDING 1</td>
<td>BROWN - BLUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGX3000</td>
<td>N / A</td>
<td>0.185</td>
<td>N / A</td>
<td>0.137</td>
<td>N / A</td>
</tr>
<tr>
<td>RGX3800</td>
<td>N / A</td>
<td>0.137</td>
<td>N / A</td>
<td>N / A</td>
<td>0.103</td>
</tr>
</tbody>
</table>
2) RGX5100

![Diagram showing the electrical connections and color codes for various windings and components.](image)

RGX5100

<table>
<thead>
<tr>
<th></th>
<th>50Hz-220V</th>
<th>50Hz-230V</th>
<th>50Hz-240V</th>
<th>60Hz-110/220V</th>
<th>60Hz-120/240V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC WINDING 1</td>
<td>RED - GRAY</td>
<td>0.390</td>
<td>0.367</td>
<td>0.429</td>
<td>0.329</td>
</tr>
<tr>
<td>AC WINDING 2</td>
<td>ORANGE - BLUE</td>
<td>0.390</td>
<td>0.367</td>
<td>0.429</td>
<td>0.329</td>
</tr>
<tr>
<td>SUB COIL</td>
<td>BLUE - BLUE</td>
<td>1.748</td>
<td>1.613</td>
<td>1.746</td>
<td>1.610</td>
</tr>
<tr>
<td>DC WINDING</td>
<td>BROWN - BROWN</td>
<td>0.147</td>
<td>0.169</td>
<td>0.147</td>
<td>0.133</td>
</tr>
<tr>
<td>AC WINDING 1</td>
<td>GREEN - WHITE</td>
<td>N / A</td>
<td>0.074</td>
<td>N / A</td>
<td>N / A</td>
</tr>
</tbody>
</table>

6-4 ROTOR ASSEMBLY

1) Field coil
 Remove the brush holder and measure resistance between the slip rings.

![Diagram showing the measurement setup for resistance between slip rings.](image)

<table>
<thead>
<tr>
<th>Rotor (Slip ring)</th>
<th>50Hz</th>
<th>60Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>220V</td>
<td>230V</td>
</tr>
<tr>
<td>RGX3000</td>
<td>45.0</td>
<td>45.0</td>
</tr>
<tr>
<td>RGX3800</td>
<td>49.3</td>
<td>49.3</td>
</tr>
<tr>
<td>RGX5100</td>
<td>47.0</td>
<td>47.0</td>
</tr>
</tbody>
</table>

NOTE: If the circuit tester is not sufficiently accurate, it may not show the values given and may give erroneous readings. Erroneous reading will also occur when there is a wide variation of resistance among coil windings or when measurement is performed at ambient temperatures different from 20°C (68°F).
2) Cleaning Slip rings
The slip ring surfaces must be uniformly bright. Slip rings showing black spots, excessive wear, or uneven wear must be repaired. A stained slip ring lowers generator efficiency and output voltage. Polish the slip rings with fine sandpaper while turning the rotor until rough spots disappear. Care should be taken not to touch the rotor coils with the sandpaper.

6-5 BRUSH
The brushes must be smooth where they contact the slip rings. If not, polish smooth the brushes with sandpaper. A brush that is not smooth produces arcs between the brush and slip ring leading to possible damage. Usable brush lengths are from 5 mm to 11 mm (0.20" to 0.43"). A brush shorter than 5 mm must be replaced because decreased contact pressure between the brush and slip ring lowers generator efficiency and output voltage.

6-6 A.V.R. (AUTOMATIC VOLTAGE REGULATOR)
1) Features
This A.V.R. operates to control the field current in order to maintain the output voltage for the AC current, which generated by the magnetic flux by the field coil.

2) A.V.R. trouble may be identified by simply looking at the A.V.R., or by the inter-lead resistance with a tester, or actually mounting it in the generator and operating it.
(a) A.V.R. TROUBLE IDENTIFICATION by APPEARANCE
If an A.V.R. electronic part is burnt dark, or the surface epoxy resin melted, it often indicates A.V.R. trouble.

(b) IDENTIFYING A.V.R. TROUBLE by CHECKING INTER-LEAD RESISTANCE
Check the inter-lead resistance of the A.V.R. with a tester, referring to the following table. If the tester readings very greatly from the values specified in the table on next page, the A.V.R. is faulty.

NOTE : Take tester inaccuracy into account in reading the tester.

(c) IDENTIFYING A.V.R. TROUBLE by MOUNTING and OPERATING in THE GENERATOR
SCR or transistor damage cannot be detected by simply looking at the A.V.R. or checking the lead resistance. Check it by mounting the suspectedly faulty A.V.R. in a normal generator, or mount a normal A.V.R. in a generator which fails to generate voltage.

* Checking table for analogue circuit tester. (R±20%)

<table>
<thead>
<tr>
<th>Apply red ⊗ needle of the circuit tester</th>
<th>Apply black ⊕ needle of the circuit tester (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.V.R. TYPE (A)</td>
<td>A.V.R. TYPE (B)</td>
</tr>
<tr>
<td>Yellow ①</td>
<td>White ③</td>
</tr>
<tr>
<td>Yellow ②</td>
<td>White ④</td>
</tr>
<tr>
<td>Blue ①</td>
<td>Red ③</td>
</tr>
<tr>
<td>Blue ②</td>
<td>Green ③</td>
</tr>
<tr>
<td>Brown ①</td>
<td>White ④</td>
</tr>
<tr>
<td>Brown ②</td>
<td>Red ④</td>
</tr>
<tr>
<td>Yellow ③</td>
<td>Green ④</td>
</tr>
<tr>
<td>Yellow ④</td>
<td>White ④</td>
</tr>
</tbody>
</table>

* Checking table for analogue circuit tester. (R±20%)

<table>
<thead>
<tr>
<th>Apply red ⊗ needle of the circuit tester</th>
<th>Apply black ⊕ needle of the circuit tester (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.V.R. TYPE (B)</td>
<td>A.V.R. TYPE (A)</td>
</tr>
<tr>
<td>White ①</td>
<td>Red ③</td>
</tr>
<tr>
<td>Red ②</td>
<td>Green ③</td>
</tr>
<tr>
<td>Green ①</td>
<td>White ④</td>
</tr>
<tr>
<td>White ②</td>
<td>Blue ④</td>
</tr>
<tr>
<td>Blue ①</td>
<td>White ④</td>
</tr>
<tr>
<td>Blue ②</td>
<td>Green ④</td>
</tr>
<tr>
<td>Blue ①</td>
<td>White ④</td>
</tr>
<tr>
<td>Blue ②</td>
<td>Green ④</td>
</tr>
</tbody>
</table>
6-7 DIODE STACK

Circuit inside of the diode stack is as shown in Fig.6-8a. Check continuity between each terminal by using a circuit tester as shown in Fig.6-8b. The diode stack is normal when continuity is as follows:

* Checking table for analogue circuit tester.

<table>
<thead>
<tr>
<th>Analogue circuit tester</th>
<th>Apply black ⊖ needle of the circuit tester</th>
<th>Brown</th>
<th>Brown</th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply red ⊕ needle of the circuit tester</td>
<td>Brown</td>
<td>—</td>
<td>No continuity</td>
<td>Continuity</td>
<td>No continuity</td>
</tr>
<tr>
<td>Brown</td>
<td>No continuity</td>
<td>—</td>
<td>Continuity</td>
<td>No continuity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>No continuity</td>
<td>No continuity</td>
<td>—</td>
<td>No continuity</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Continuity</td>
<td>Continuity</td>
<td>Continuity</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

* Checking table for digital circuit tester.

<table>
<thead>
<tr>
<th>Digital circuit tester</th>
<th>Apply red ⊕ needle of the circuit tester</th>
<th>Brown</th>
<th>Brown</th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply black ⊖ needle of the circuit tester</td>
<td>Brown</td>
<td>—</td>
<td>No continuity</td>
<td>Continuity</td>
<td>No continuity</td>
</tr>
<tr>
<td>Brown</td>
<td>No continuity</td>
<td>—</td>
<td>Continuity</td>
<td>No continuity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>No continuity</td>
<td>No continuity</td>
<td>—</td>
<td>No continuity</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Continuity</td>
<td>Continuity</td>
<td>Continuity</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: In checking the diode, direction of connection is contrary to the ordinary case because of characteristics of the diode and battery incorporated in the tester.

NOTE 2: "Continuity" means forward direction characteristics of the diode, and different from short circuit condition (in which a pointer of the tester goes out of its normal scale), shows resistance to some extent. When results of the checking indicates failure even in one section, replace with a new one.
6-8 OIL SENSOR

(1) Disconnect wires coming from the sensor at the connection.
(2) Loosen the sensor to remove it from the engine.
(3) Plug the opening of oil filler hole (created after sensor is removed) with suitable means such as oil gauge.
(4) Connect the removed wires again with the oil sensor.
(5) Start the engine with the oil sensor removed and confirm if;
 a. Engine stops after 5 seconds which is normal, or
 b. Engine does not stop after more than 10 seconds which is unusual.

NOTE: The sensor will not operate properly when wire is broken or poorly connected. Check the wires for correct connection. If it fails to stop within 5 seconds after the wirings have checked, the sensor is wrong. Replace the sensor with new one.

6-8-1 SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Float type (with lead switch incorporated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance (at FULL oil level)</td>
<td>100 M ohms or over</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-30 to +180 degree Celsius</td>
</tr>
</tbody>
</table>

6-8-2 CONSTRUCTION AND OPERATION

Disconnect wires coming from the sensor. The oil sensor is composed of the float, permanent magnet incorporated into the float and the oil sensor.
In accordance with the oil level, the float moves up and down.
When the oil level is upper level, the float moves up.
When the oil level is lower level, the float moves down.
The permanent magnet is close to the lead switch, and the lead switch is activated by the magnetic force.

NOTE: With regards to the wiring diagram, please refer to the section 9 (page 52).
7. DISASSEMBLY AND ASSEMBLY

7-1 PREPARATION and PRECAUTIONS
1) Be sure to memorize the location of individual parts when disassembling the generator so that the generator can be reassembled correctly. Tag the disassembled part with the necessary information to facilitate easier and smoother reassemble.

2) For more convenience, divide the parts into several groups and store them in boxes.

3) To prevent bolts and nuts from being misplaced or installed incorrectly, replace them temporarily to their original position.

4) Handle disassembled parts with care; clean them before reassemble using a neutral cleaning fluid.

5) Use all disassembly / assembly tools properly, and use the proper tool for each specific job.

7-2 DISASSEMBLY PROCEDURES

7-2-1 FUEL TANK

1) Shut the fuel strainer and discharge fuel from caburetor.

2) Disconnect rubber pipe from the strainer.

3) Remove the fuel tank.
 - M6 flange bolt . . . 4 pcs.
 - Rubber(tank) . . . 4 pcs.

7-2-2 CONTROL PANEL and CONTROL BOX

1) Remove the control panel.
 - M6 flange bolt . . . 4 pcs.
 - M4 flange bolt . . . 4 pcs.

2) Disconnect the connectors on the wiring from the control panel to the alternator.

3) Remove the control box.
7-2-3 ALTERNATOR

(1) Remove the end cover.
 M6 flange bolt . . . 2 pcs.

(2) Disconnect the connectors on the wiring from the alternator.

(3) Remove the AVR unit, brush holder and diode stack.

(4) Set the generator set with the rear cover upwards.

NOTE) Before starting this work, make sure engine oil has been discharged.

(5) Remove the two flange nuts fixing rear cover onto the mount rubbers.
 M8 flange nut . . . 2 pcs.

(6) Remove the rear cover.
 RGX3000 M6 × 140mm . . . 3 pcs.
 RGX3800 M6 × 165mm . . . 3 pcs.
 RGX5100 M6 × 165mm . . . 4 pcs.

(7) Take out stator cover with claws (2 pcs) raised up by using screw driver.

(8) Remove the stator.

NOTE: The stator is heavy. Be careful do not hit the coil of the stator to the rotor.
(9) Take off the through bolt of the rotor.

(10) Use a bolt and oil as a tool for pulling out rotor in the following procedures:

1. Pour engine oil into the center hole of rotor shaft. Fill with oil to the shaft end.
2. Prepare a bolt with the following thread size: M10 × 1.5 (RGX3000 / RGX3800)
 M12 × 1.75 (RGX5100)
3. Apply a few turns of seal tape around the tip of the bolt.
4. Screw the bolt into the thread of the rotor shaft.
5. Torque the bolt using a socket wrench until the rotor comes off loose.

* The hydraulic pressure inside the rotor shaft takes apart the rotor from the engine shaft.

(11) Remove the front cover.
M8 × 20 bolt(countersunk head) . . . 4 pcs.
7-3 COMPONENT PARTS

(1) Generator assembly

- RGX3000 / RGX3800
- 24.0-26.0 N·m
- 240-260 kgf·cm
- 17.7-19.2 ft·lbs
- 6.5-8.5 N·m
- 65-85 kgf·cm
- 4.8-6.3 ft·lbs
- 22.0-24.0 N·m
- 220-240 kgf·cm
- 16.2-17.7 ft·lbs

- BOLT
- N-BRACKET
- FRONT COVER
- ROTOR
- BEARING
- FAN
- THROUGH BOLT
- STATOR COVER
- STATOR
- DIODE STACK
- BRUSH HOLDER
- END COVER
- SPONGE (FILTER)
- COVER BOLT
- MOUNT RUBBER
- AVR UNIT
- REAR COVER
- FLANGE NUT
- 16.0-20.0 N·m
- 160-200 kgf·cm
- 11.8-14.8 ft·lbs
- 6.5-8.5 N·m
- 65-85 kgf·cm
- 4.8-6.3 ft·lbs
(2) Control Box Assy

50Hz - 220V
240V

- CONTROL BOX
- PILOT LAMP
- DC CIRCUIT BREAKER
- VOLTMETER
- ENGINE SWITCH
- DC RECEPTACLE
- AC RECEPTACLE
- CONTROL PANEL
- EARTH (GROUND) TERMINAL

60Hz - 120V / 240V

N / A
(3) Fuel Tank
(4) Muffler

MUFFLER COVER

MUFFLER BRACKET

MUFFLER BRACKET 1

MUFFLER BRACKET 2

EX. PIPE

DUCT (CASE)

M6 × 8 flange bolt

6.5-8.5 N·m
65-85 kgf·cm
4.8-6.3 ft·lbs

M8 flange nuts

18.0-22.0 N·m
180-220 kgf·cm
13.3-16.2 ft·lbs

MUFFLER

RGX5100

M8 × 12 flange bolt
16.5-20.5 N·m
165-205 kgf·cm
12.2-15.2 ft·lbs

RGX3000

M6 × 12 flange bolt
6.5-8.5 N·m
65-85 kgf·cm
4.8-6.3 ft·lbs

7-4 ASSEMBLY PROCEDURES

7-4-1 ENGINE and FRAME

(1) Attach the mount rubbers to the frame. Insert the setting tongue of mount rubber into the hole on the frame and tighten the nut from the bottom of the frame.

RGX3000/RGX3800
M8 flange nut . . . 4 pcs.

Tightening torque :	20.0-24.0 N•m
	200-240 kgf•cm
	(14.8-17.8 ft•lbs)

RGX5100
M10 flange nut . . . 4 pcs.

Tightening torque :	24.0-30.0 N•m
	240-300 kgf•cm
	(17.8-22.2 ft•lbs)

NOTE : The mount rubbers are selected to reduce vibration most effectively by model. Be sure to use the correct mount rubber for your generator. Although mount rubbers have the same appearance, their characteristics are different.

(2) Install the engine into the frame from the side of it. Tighten the nuts over the mount rubber bolts to fix.

NOTE : Tighten nut together with air cleaner bracket in air cleaner side.

RGX3000/RGX3800
M8 flange nut . . . 2 pcs.

Tightening torque :	16.0-20.0 N•m
	160-200 kgf•cm
	(11.8-14.8 ft•lbs)

RGX5100
M10 flange nut . . . 2 pcs.

Tightening torque :	24.0-30.0 N•m
	240-300 kgf•cm
	(17.8-22.2 ft•lbs)

NOTE : Remove the air cleaner cover for easier installation.

NOTE : When tightening the nuts, slightly lift the engine so that the weight is not applied to the mount rubbers.
7-4-2 MUFFLER BRACKET
(1) Assemble the muffler bracket to engine.

RGX3000/RGX3800
Assemble muffler bracket 1 to cylinder head. Temporally attach the muffler bracket 2 to the muffler bracket 1.

M6 × 12 flange bolt . . . 4 pcs.

| Tightening torque | 6.5-8.5 N•m | 65-85 kgf•cm | (4.8-6.3 ft•lbs) |

RGX5100
Assemble muffler bracket to main bearing cover.

M8 × 12 flange bolt . . . 2 pcs.

| Tightening torque | 16.5-20.5 N•m | 165-205 kgf•cm | (12.2-15.2 ft•lbs) |

7-4-3 FRONT COVER
(1) Attach the N-bracket onto the front cover.

NOTE: Match the rib direction on the N-bracket with the top mark on the front cover surface.

RGX3000/RGX3800
M6 × 20 flange bolt . . . 4 pcs.

| Tightening torque | 6.5-8.5 N•m | 65-85 kgf•cm | (4.8-6.3 ft•lbs) |

RGX5100
M8 × 20 flange bolt . . . 4 pcs.

| Tightening torque | 16.5-20.5 N•m | 165-205 kgf•cm | (12.2-15.2 ft•lbs) |
(2) Attach the front cover to the engine main bearing cover.

NOTE: Match the top mark on the front cover surface with upside direction.

M8 × 20 bolt(countersunk head) . . . 4 pcs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>kgf•cm</th>
<th>(ft•lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24.0-26.0</td>
<td>240-260</td>
<td>(17.8-19.2)</td>
</tr>
</tbody>
</table>

7-4-4 ROTOR

(1) Wipe off oil, grease and dust from the tapered portion of engine shaft and matching tapered hole of rotor shaft.

(2) Mount the rotor to the engine shaft. Tighten the through bolt.

RGX3000 : M8 × 222 flange bolt . . . 1 pc.
RGX3800 : M8 × 235 flange bolt . . . 1 pc.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>kgf•cm</th>
<th>(ft•lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.0-24.0</td>
<td>220-240</td>
<td>(16.3-17.8)</td>
</tr>
</tbody>
</table>

RGX5100 : M10 × 260 flange bolt . . . 1 pc.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>kgf•cm</th>
<th>(ft•lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43.0-47.0</td>
<td>430-470</td>
<td>(31.8-34.8)</td>
</tr>
</tbody>
</table>
7-4-5 STATOR
(1) Put the stator in the front cover.

7-4-6 REAR COVER
(1) Put the rear cover over the rotor.
 Pull out the stator wirings through the
 opening of the rear cover.

 NOTE: Be careful not to give cuts to wires
 when pulling them out from the rear
 cover.

(2) Tap on the rear cover evenly with a plastic
 hammer to press the rotor bearing into the
 rear cover.

(3) Fix the rear cover with bolts.

 NOTE: Tighten the bolts evenly and in turns.

 RGX3000 : M6 × 140 flange bolt . . . 3 pcs.
 RGX3800 : M6 × 165 flange bolt . . . 3 pcs.
 RGX5100 : M6 × 165 flange bolt . . . 4 pcs.

Tightening torque :	6.5-8.5	N•m
	65-85	kgf•cm
	(4.8-6.3)	ft•lbs

(4) Set the mount rubber bolts into the rear
 cover holes.
 Do not tighten the nut at this moment.
(5) Install the brush holder, AVR unit and diode stack in the rear cover.

- **M5 × 16 bolt . . . 2 pcs. (AVR unit)**

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>kgf•cm</th>
<th>ft•lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0-4.5</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40-45</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1.5-2.0</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15-20</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>(3.0-3.3)</td>
<td>(3.0)</td>
<td>(3.0)</td>
<td>(3.0)</td>
</tr>
</tbody>
</table>

- **M5 × 16 bolt . . . 2 pcs. (brush holder)**
- **M4 × 18 bolt . . . 1 pc. (diode stack)**

NOTE: If the brush is installed oblique to the slip ring, there is possibility that the brush holder can break when the screw is tightened: or the brush may break when generator of started. Make this process carefully.

(6) Attach the connectors to the brush holder, AVR unit and diode stack.

(7) Connect the earth (ground) wire (green/yellow) with the rear cover with screw.

(8) Connect earth (ground) wire between frame and rear cover.

- On frame side: M6 × 12 bolt . . . 1 pc.
- On rear cover side: 8mm nut (commonly tighten the mount rubber bolt)
(9) Tighten the nuts over the mount rubber bolts to fix.

NOTE: When tightening the nuts, slightly lift the alternator assembly so that the weight is not applied to the mount rubbers.

RGX3000/RGX3800
M8 flange nut . . . 2 pcs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0-20.0 N•m</td>
</tr>
<tr>
<td>160-200 kgf•cm</td>
</tr>
<tr>
<td>(11.8-14.8 ft•lbs)</td>
</tr>
</tbody>
</table>

RGX5100
M10 flange nut . . . 2 pcs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.0-30.0 N•m</td>
</tr>
<tr>
<td>240-300 kgf•cm</td>
</tr>
<tr>
<td>(17.8-22.2 ft•lbs)</td>
</tr>
</tbody>
</table>

(10) Set stator cover with the crow inserted into slit and bent (2 pcs).
(11) Set the Sponge(Filter) to inside of End Cover.

NOTE: Hold the Sponge by tab of End Cover.

(12) Attach the end cover to the rear cover.

M5 × 16 bolt . . . 2 pcs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>kgf•cm</th>
<th>ft•lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0-4.5</td>
<td>40-45</td>
<td>40-45</td>
<td>3.0-3.3</td>
</tr>
</tbody>
</table>

7-4-7 MUFFLER and MUFFLER COVER

(1) Mount the Exhaust pipe and the gasket on the cylinder head.

M8 flange nut (sus) . . . 2 pcs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>kgf•cm</th>
<th>ft•lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.0-22.0</td>
<td>180-220</td>
<td>180-220</td>
<td>13.3-16.2</td>
</tr>
</tbody>
</table>

※Take utmost care not to cut your hand with the muffler gasket.
(2) Attach the muffler to the exhaust pipe and muffler bracket without tightening.

(3) Tightening the muffler to the exhaust pipe and bracket.
M8 flange nuts (sus) . . . 2 pcs. (exhaust pipe)

<table>
<thead>
<tr>
<th>Tightening torque:</th>
<th>18.0-22.0 N•m</th>
<th>180-220 kgf•cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(13.3-16.2 ft•lbs)</td>
<td></td>
</tr>
</tbody>
</table>

RGX3000/RGX3800
M6 × 12 flange bolt . . . 2 pcs. (bracket2)

<table>
<thead>
<tr>
<th>Tightening torque:</th>
<th>6.5-8.5 N•m</th>
<th>65-85 kgf•cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4.8-6.3 ft•lbs)</td>
<td></td>
</tr>
</tbody>
</table>

RGX5100
M8 × 12 flange bolt . . . 1 pc. (bracket)

<table>
<thead>
<tr>
<th>Tightening torque:</th>
<th>16.5-20.5 N•m</th>
<th>165-205 kgf•cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(12.2-15.2 ft•lbs)</td>
<td></td>
</tr>
</tbody>
</table>

(4) Assemble the duct and the muffler cover.
M6 × 8 flange bolt . . . 7 pcs.

<table>
<thead>
<tr>
<th>Tightening torque:</th>
<th>6.5-8.5 N•m</th>
<th>65-85 kgf•cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4.8-6.3 ft•lbs)</td>
<td></td>
</tr>
</tbody>
</table>
7-4-8 FUEL TANK

(1) Hand tighten the strainer screw as far as it will go, loosen it again by one or two rotations (fuel outlet faces down), then tighten the lock nut.

(2) Mount the fuel tank on the frame with rubber washers between the tank flange and the frame.

 M6 x 20 mm bolt (black) . . . 4 pcs.
 Rubber washer . . . 4 pcs.

 NOTE: For easy tank assembly, glue the rubber washers over the mounting holes of the frame.

(3) Connect the rubber pipe.
 First, fit the hose clamps on the rubber pipe and connect it to the strainer and the carburetor. Then fasten it with the hose clamps.

 NOTE: Apply a drop of oil to the rubber pipe for easier connection.
7-4-9 CONTROL BOX ASSY
Refer to Section 7-5 for disassembly, checking and reassembly procedures of the control panel.

(1) Put the cover onto the frame temporary.

NOTE: Don't set bolt for the control box.

(2) Pass wires drawn out generator and engine to the control box.

(3) Connect the wires coming from the control panel with wires coming from generator and engine.

NOTE: Connect the wires of the same color.

(4) Install the control panel onto the control box.

M4 × 12 mm Screw . . . 4 pcs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>15-20 kgf•cm</th>
<th>(1.1-1.5 ft•lbs)</th>
</tr>
</thead>
</table>

(5) Mount the control panel together with the control box (Control box Assembly) onto the frame.

M6 × 12 mm Screw . . . 4 pcs.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th>N•m</th>
<th>50-60 kgf•cm</th>
<th>(3.7-4.8 ft•lbs)</th>
</tr>
</thead>
</table>
7-5 CHECKING, DISASSEMBLY and REASSEMBLY of the CONTROL PANEL

7-5-1 CHECKING OF THE CONTROL PANEL
Dismount the control box assy from frame. Remove the control box from control panel and check each components and wiring. Refer to Section 6 for the detail of checking procedure for the components in the front panel.

7-5-2 DISASSEMBLY
(1) Remove the control panel from the control box.
(2) Disconnect the connectors on the wires to detach the control panel.
(3) After disconnecting individual wires, remove the control panel components.

NOTE: Full power switch have their wires soldered. Unsolder them to remove those parts if necessary.

7-5-3 REASSEMBLY
(1) Install the receptacles, circuit breakers, terminals, switches, etc. on the control panel and wire them.

NOTE: Circuit diagrams are shown in Section 9. Colored wires are used for easy identification, and are of the correct capacity and size. Use heat-resistant type wires (permissible temperature range 75°C or over) in the specified gauge shown in the circuit diagrams.

(2) Connect the wires of control panel components.

(3) Attach the control panel and control box to the Frame.
 (Refer to 7-4-9 for details.)
8. TROUBLESHOOTING

8-1 NO AC OUTPUT
8-1-1 CHECKING STATOR
(1) Remove control panel and disconnect stator wires at the connectors.

(2) Measure the resistance between terminals on stator leads.
 Refer to Table of Section 6-4 STATOR for normal resistance.
 If stator is faulty, replace it with a new one.

(3) Check the insulation resistance between stator core and each stator lead using a megger tester.
 If insulation is bad, replace stator with a new one.

8-1-2 CHECKING ROTOR
1) Field coil
 Remove the brush holder and measure resistance between the slip rings. Refer to Section 6-5 ROTOR ASSEMBLY for normal resistance.

 NOTE : If the circuit tester is not sufficiently accurate, it may not show the values given and may give erroneous readings. Erroneous reading will also occur when there is a wide variation of resistance among coil windings or when measurement is performed at ambient temperatures different from from 20°C (68°F).
2) Cleaning Slip rings
The slip ring surfaces must be uniformly bright. Slip rings showing black spots, excessive wear, or uneven wear must be repaired. A stained slip ring lowers generator efficiency and output voltage. Polish the slip rings with fine sandpaper while turning the rotor until rough spots disappear. Care should be taken not to touch the rotor coils with the sandpaper.

8-2 AC VOLTAGE IS TOO HIGH OR TOO LOW

8-2-1 CHECKING ENGINE SPEED
If the engine speed is too high or too low, adjust it to the rated r.p.m.

[How to adjust engine r.p.m.]
* Loosen the lock nut on the adjusting screw.
* Turn the adjusting screw clockwise to decrease engine speed or counterclockwise to increase engine speed.

Normal engine speed at no load:
- 3050 to 3250 rpm for 50Hz type
- 3650 to 3850 rpm for 60Hz type

8-2-2 CHECKING STATOR
Check stator referring to Step 8-1-1.

8-2-3 CHECKING ROTOR
Check rotor referring to Step 8-1-2.
8-3 AC VOLTAGE IS NORMAL AT NO-LOAD, BUT THE LOAD CANNOT BE APPLIED.

8-3-1 CHECK THE ENGINE SPEED.
If the engine speed is low, adjust it to the rated r.p.m.
*Refer to Step 8-2-1 for engine speed adjustment.

8-3-2 CHECK THE TOTAL WATTAGE OF APPLIANCES CONNECTED TO THE GENERATOR.
Refer to Section 4 “RANGE OF APPLICATIONS” for the wattage of the appliances.
If the generator is overloaded, reduce the load to the rated output of the generator.

8-3-3 CHECK THE APPLIANCE FOR TROUBLE.
If the appliance is faulty, repair it.

8-3-4 CHECK IF THE ENGINE IS OVERHEATED.
If the cooling air inlet and/or cooling air outlet is clogged with dirt, grass, chaff or other debris, remove it.

8-3-5 CHECK THE INSULATION OF THE GENERATOR.
(1) Stop the engine. Remove the control panel, and disconnect the connector of GREEN lead for ground.
(2) Measure the insulation resistance between the live terminal of the receptacle and the ground terminal.
 If the insulation resistance is less than 1MΩ, disassemble the generator and check the insulation resistance of the stator, rotor and the live parts in the control box.
 (Refer to Section 5-4.)
 Any part where the insulation resistance is less than 1MΩ, the insulation is faulty and may cause electric leakage. Replace the faulty part.
8-4 NO DC OUTPUT

8-4-1 CHECK THE AC OUTPUT.
Check the generator by following Step 8-1-1 through Step 8-1-2.

8-4-2 CHECK THE DC BREAKER.
If the DC breaker turned off while charging a battery, check the cables for short-circuit or connection in reverse polarity before resetting it on.

NOTE: If the DC output is used to charge a large capacity battery or an over-discharged battery, an excessive current may flow causing.

8-4-3 CHECK THE WIRING.
Check all the wires to be connected correctly.

8-4-4 CHECK THE DIODE STACK.
Remove the end cover and check the diode stack with a circuit tester.
Refer to Section 6-7 “DIODE STACK” for the checking procedure.

8-4-5 CHECK THE DC COIL
Check the resistance between two Brown leads from stator with a circuit tester.

If the resistance reading is much larger or smaller than the specified value, the DC coil of the stator is faulty. Replace stator with a new one.

<table>
<thead>
<tr>
<th></th>
<th>50Hz - 220V</th>
<th>60Hz - 220V</th>
<th>50Hz-230V</th>
<th>50Hz-240V</th>
<th>60Hz - 120V/240V</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGX3000</td>
<td>0.193</td>
<td>0.191</td>
<td>0.238</td>
<td>0.215</td>
<td>0.181</td>
</tr>
<tr>
<td>RGX3800</td>
<td>0.186</td>
<td>0.187</td>
<td>0.172</td>
<td>0.183</td>
<td>0.163</td>
</tr>
<tr>
<td>RGX5100</td>
<td>0.147</td>
<td>0.133</td>
<td>0.169</td>
<td>0.147</td>
<td>0.133</td>
</tr>
</tbody>
</table>
9. WIRING DIAGRAM

RGX3000 (50Hz-220, 240V)

RGX3800 (50Hz-220, 240V)

Wiring color code

Blk : Black
Blk/W : Black/White
Blu : Blue
LBlu : Light blue
Bm : Brown
Bm/W : Brown/White
Gm : Green
Gm/W : Green/White
Org : Orange
Gry : Gray
R : Red
W : White
Y : Yellow
W/Bk : White/Black
Gm/Y : Green/Yellow
Pur : Purple
RGX3000 (60Hz-120V)

CONTROL BOX AY

Engine switch
AC circuit breaker
Hour meter
Pilot lamp
DC Output receptacle
DC12V
Earth (Ground) terminal

RGX3800 (60Hz-120/240V)

CONTROL BOX AY

Engine switch
AC circuit breaker
Idle control switch
DC circuit breaker
DC Output receptacle
DC12V
Earth (Ground) terminal

Wiring color code
Blk : Black
B/W : Black/White
Blu : Blue
LBlu : Light blue
Brn : Brown
Brn/W : Brown/White
Gnr : Green
Gnr/W : Green/White
Org : Orange
Gry : Gray
R : Red
W : White
Y : Yellow
W/B : White/Black
Grn/Y : Green/Yellow
Pur : Purple

Blk : Black
Wiring color code
B/W : Black/White
Blu : Blue
LBlu : Light blue
Brn : Brown
Brn/W : Brown/White
Gnr : Green
Gnr/W : Green/White
Org : Orange
Gry : Gray
R : Red
W : White
Y : Yellow
W/B : White/Black
Grn/Y : Green/Yellow
Pur : Purple
RGX3800 (60Hz-120/240V) [Electric starter model]

RGX5100 (60Hz-120/240V)
RGX5100 (60Hz-120/240V) [Electric starter model]